
SCIENTIFIC CULTURE, Vol. 10, No. 1, (2024), pp 87-99 

 
 
 
 
 

Copyright © 2024  SCIENTIFIC CULTURE  87 
 
 

SOLVING TIME-FRACTIONAL RADON DIFFUSION EQUATION USING 
CRANK-NICOLSON FINITE DIFFERENCE SCHEME 

Vijaymala Ghuge1, T. L. Holambe2, Bhausaheb Sontakke3, Gajanan Shrimangale4 

1Department of Mathematics, Rashtramata Indira Gandhi College, Jalna, (M.S.), India. 
2Department of Mathematics, Late Shankarrao Gutte Gramin Arts, Science and Commerece, 

Dharmapuri, Beed, (M.S.), India. 

3Department of Mathematics, Prathishthan Mahavidyalaya, Paithan, Aurangabad, India. 
4Department of Mathematics, Mrs. Kesharbai Sonajirao Kshirsagar Alias kaku Arts, Science 

and Commerce College Beed (M.S.), India. 

ABSTRACT 

This study introduces a finite difference numerical technique to simulate the solutions of the 
time-fractional Radon diffusion equation within a water medium. We develop the fractional 
order Crank-Nicolson finite difference scheme, utilizing time-fractional derivatives in the 
Caputo sense. We discuss the stability of the solution obtained by the developed Crank-
Nicolson finite difference scheme. Furthermore, we delve into the convergence of the 
developed finite difference scheme. Lastly, we represent approximate solutions graphically 
with the help of Python programs.  
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1  Introduction 
Fractional calculus extends traditional calculus by accommodating non-integer or fractional 
orders of differentiation and integration, opening doors to modeling complex systems and 
phenomena. This field finds various applications across diverse domains such as Physics, 
Engineering, Signal Processing, Biology, Medicine, Chemical Engineering, Astronomy, and 
Astrophysics, among others [2, 3, 4, 6, 9, 17, 18]. Fractional partial differential equations 
describe intricate physical phenomena with memory and long-range dependencies, 
incorporating fractional order derivatives. Obtaining analytical solutions for such equations, 
especially in non-trivial cases, poses significant challenges due to the involvement of fractional 
derivatives. Finite difference methods, known for its versatility, are extensively employed for 
solving differential equations in multiple dimensions. They prove invaluable when analytical 
solutions are impractical or unavailable to study[1, 7, 8, 10, 11, 12, 15]. Radon, an odorless 
and colorless radioactive gas, occurs naturally through the radioactive decay of elements like 
uranium present in soil and rocks worldwide. It can migrate into the atmosphere and infiltrate 
both surface and underground water, posing health risks in both outdoor and indoor 
environments. Researchers extensively investigate its movement through various substances 
like soil, air, concrete, and activated charcoal [5, 13,14, 16]. Our aim is to study concentration 
of Radon in water medium. 
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In this paper, we consider the time-fractional order radon diffusion equation given below,  

 
( , )

= 𝐷
( , )

− 𝜆𝑉(𝜁, 𝜏),0 < 𝛾 ≤ 1 (1) 

 with initial condition:  

 𝑉(𝜁, 0) = 0,0 < 𝜁 < 𝐿 (2) 

 and boundary conditions:  

 𝑉(0, 𝜏) = 𝑉  𝑎𝑛𝑑 
( , )

= 0, 𝜏 ≥ 0 (3) 

where, 𝜆 is the decay constant, 𝐷 is a diffusion coefficient, 𝜁 and 𝜏 are spatial and temporal 
variables respectively. Time-fractional derivative in the above equation is considered in the 
Caputo sense, which is defined as follows:  

Definition 1.1 The Caputo time-fractional derivative of order 𝛾, (0 < 𝛾 ≤ 1) is defined by,  

 
( , )

=
( )

∫  
( , )

 
( )

 (4) 

  

The subsequent sections of this paper are structured as follows: In section 2, we construct a 
Crank-Nicolson finite difference scheme tailored specifically for solving the time-fractional 
Radon diffusion equation. Section 3 delves into the scrutiny of the stability of the devised 
scheme, ensuring its robustness and reliability. Section 4 presents a rigorous proof of the 
convergence of our finite difference approximation, establishing its accuracy and efficacy. 
Finally, in the concluding section, we address a series of test problems, providing insightful 
illustrations of their solutions.  

2  Finite Difference Scheme 
Let 𝑉(𝜁 , 𝜏 ), 𝑖 = 0,1,2, . . . , 𝑀 and 𝑘 = 0,1,2, . . . , 𝑁 be the exact solution of time fractional 
radon diffusion equation (1)-(3) at the mesh point (𝜁 , 𝜏 ), where 𝜏 = 𝑘𝜏, 𝑘 = 0,1,2, … , 𝑁 

and 𝜁 = 𝑖ℎ, 𝑖 = 0,1,2, … , 𝑀, where 𝜏 =  and ℎ = . Let 𝑉  be the numerical approximation 

of the point 𝑉(𝑖ℎ, 𝑘𝜏). 

We approximate time-fractional derivative in the Caputo sense as follows,  

 
( , )

≈
( )

∑
( , ) ( , )

∫
( )

( )
+ 𝑂(𝜏) 

 =
( )

∑
( , ) ( , )

∫
( )

)
+ 𝑂(𝜏) 

 =
( )

[𝑉 − 𝑉 ] +
( )

∑ 𝑏 [𝑉(𝜁 , 𝜏 ) − 𝑉(𝜁 , 𝜏 )] + 𝑂(𝜏) 

 where 𝑏 = (𝑗 + 1) − 𝑗 , 𝑗 = 0,1,2, … , 𝑁. 
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Now, we adopt the second order central difference scheme in space for each interior grid point 
𝜁 , 0 ≤ 𝑖 ≤ 𝑀. Therefore,  

 
( , )

= [𝛿 𝑢 + 𝛿 𝑢 ] 

 = +  (5) 

where, 𝛿  is the central difference operator. Using time fractional approximation the Crank-
Nicolson type numerical approximation to equation (1)-(3) is given as follows,  

 
( )

𝑉 − 𝑉 +
( )

∑ 𝑏 𝑉(𝜁 , 𝜏 ) − 𝑉(𝜁 , 𝜏 )  

 = + − 𝜆𝑉(𝜁 , 𝜏 ) 

where 𝑏 = (𝑗 + 1) − 𝑗 . After simplification, we obtain  

 [𝑉 − 𝑉 ] + ∑ 𝑏 [𝑉𝜁 , 𝜏 ) − 𝑉(𝜁 , 𝜏 )] =
( )

[𝑉 −

2𝑉 + 𝑉 + 𝑉 − 2𝑉 + 𝑉 ] − 𝜆Γ(2 − 𝛾)𝜏 𝐶  

Let 𝑟 =
( )

 and 𝜇 = 𝜆Γ(2 − 𝛾)𝜏 , we get  

[𝑉 − 𝑉 ] + 𝑏 [𝑉(𝜁 , 𝜏 ) − 𝑉(𝜁 , 𝜏 )]

= 𝑟[𝑉 − 2𝑉 + 𝑉 + 𝑉 − 2𝑉 + 𝑉 ] − 𝜇𝑉  

After simplification, we get  

−𝑟𝑉 + (1 + 2𝑟)𝑉 − 𝑟𝑉 = 𝑟𝑉 + (1 − 2𝑟 − 𝜇)𝑉 + 𝑟𝑉 − ∑ 𝑏 [𝑉 −

𝑉 ] (6) 

Where 𝑟 =
( )

, 𝜇 = 𝜆Γ(2 − 𝛾) and 𝑏 = (𝑗 + 1) − 𝑗  

From equation (6), we get  

−𝑟𝑉 + (1 + 2𝑟)𝑉 − 𝑟𝑉

= 𝑟𝑉 + (1 − 2𝑟 − 𝜇)𝑉 + 𝑟𝑉 − [𝑏 (𝑉 − 𝑉 ) + 𝑏 (𝑉 − 𝑉 )

+ 𝑏 (𝑉 − 𝑉 ) + ⋯ + 𝑏 (𝑉 − 𝑉 ) + 𝑏 (𝑉 − 𝑉 )] − 𝑟𝑉 + (1

+ 2𝑟)𝑉 − 𝑟𝑉  

 = 𝑟𝑉 + (1 − 2𝑟 − 𝜇)𝑉 + 𝑟𝑉 + ∑ (𝑏 − 𝑏 )𝑉 + 𝑏 𝑉  
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The initial condition is approximated as 𝑉 , 𝑖 = 0,1,2, … , 𝑀. For the two boundary points 𝜁  

and 𝜁 , the corresponding discretization schemes are, 𝑉 = 𝑉  and 
( , )

= 𝜁 implies 𝑉 =

𝑉 . 

Therefore, the fractional approximated initial boundary value problem is as follows: 

For 𝑘 = 0,  

−𝑟𝑉 + (1 + 2𝑟)𝑉 − 𝑟𝑉 = 𝑟𝑉 + (1 − 2𝑟 − 𝜇)𝑉 + 𝑟𝑉 − 𝑟𝑉 + (1 +

2𝑟)𝑉 − 𝑟𝑉  (7) 

For 𝑘 ≥ 0,  

 = 𝑟𝑉 + (1 − 2𝑟 − 𝜇 − 𝑏 )𝑉 + 𝑟𝑉 + ∑ (𝑏 − 𝑏 )𝑉 + 𝑏 𝑉  (8) 

The initial conditions,  

 𝑉 , 𝑖 = 0,1,2, … , 𝑀. (9) 

The boundary conditions, 𝑉 = 𝑉  and  

 𝑉 = 𝑉 ; 𝑘 = 0,1,2, … , 𝑁. (10) 

where 𝑟 =
( )

, 𝜇 = 𝜆Γ(2 − 𝛾)𝜏  and 𝑏 = (𝑗 + 1) ) − 𝑗 , 𝑗 = 1,2,3, … , 𝑘. 

Therefore, the fractional approximated initial boundary value problem (7)-(10) can be written 
in the following matrix equation form  

 𝐴𝑉 = 𝐵𝑉∘ + 𝑆 (11) 

 𝐴𝑉 = 𝐶𝑉 + ∑ (𝑏 − 𝑏 )𝑉 + 𝑏 𝑉 + 𝑆 (12) 

 where  

 𝐴 = [𝑎 ] =

⎩
⎪
⎨

⎪
⎧

1 + 2𝑟 if𝑖 = 𝑗
−𝑟 if𝑖 = 𝑗 + 1
−𝑟 if𝑖 = 𝑗 − 1
−2𝑟 if𝑖 = 𝑀, 𝑗 = 𝑀 − 1
0 otherwise

 

  

 𝐴 = [𝑎 ] =

⎩
⎪
⎨

⎪
⎧

1 − 2𝑟 − 𝜇 if𝑖 = 𝑗
𝑟 if𝑖 = 𝑗 + 1
𝑟 if𝑖 = 𝑗 − 1
2𝑟 if𝑖 = 𝑀, 𝑗 = 𝑀 − 1
0 otherwise
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 𝐴 = [𝑎 ] =

⎩
⎪
⎨

⎪
⎧

1 − 2𝑟 − 𝜇 − 𝑏 if𝑖 = 𝑗
𝑟 if𝑖 = 𝑗 + 1
𝑟 if𝑖 = 𝑗 − 1
2𝑟 if𝑖 = 𝑀, 𝑗 = 𝑀 − 1
0 otherwise

 

 𝑉 = [𝑉 , 𝑉 , 𝑉 , ⋯ , 𝑉 ] , 𝑉 = [𝑉 , 𝑉 , 𝑉 , ⋯, 𝑉 ] , 𝑉∘ = [𝑉 , 𝑉 , 𝑉 , ⋯ , 𝑉 ] , 𝑆 =

[𝑟𝑉 , 0,0, ⋯ ,0] , 𝑟 =
( )

, 𝜇 = 𝜆Γ(2 − 𝛾)𝜏 , 𝑏 = (𝑗 + 1) − 𝑗 , 𝑗 = 1,2, ⋯ , 𝑘, 𝑖 =

0,1, ⋯ , 𝑀, 𝑘 = 0,1, ⋯ , 𝑁. In the next subsection, we discuss the question of stability.  

3  Stability 
Lemma 3.1 If 𝜆 (𝐴), 𝑗 = 1,2,3, ⋯ , 𝑀 represents the eigenvalues of matrix 𝐴,then  

   

    1.  𝜆 (𝐴) ≥ 1  

    2.  ∥ 𝐴 ∥ ≤ 1  

    3.  ∥ 𝐵 ∥ < 1  

    4.  ∥ 𝐶 ∥ < 1  

Proof: The Grschgorinâ€™s theorem states that each eigenvalues 𝜆 of matrix 𝐴 is an at least 
one of the following disk.  

 |𝜆 − 𝑎 | = ∑ , 𝑎 , 𝑗 = 1,2,3, ⋯ , 𝑀 

Therefore, the eigenvalue 𝜆 of the matrix 𝐴 satisfies at least one of the following inequality,  

 |𝜆| ≤ |𝜆 − 𝑎 | + ∑ , 𝑎 ≤ ∑ , 𝑎 ; 1 ≤ 𝑗 ≤ 𝑀 

and  

 |𝜆| ≥ |𝑎 | − |𝜆 − 𝑎 | ≥ |𝑎 | − ∑ , 𝑎 ; 1 ≤ 𝑗 ≤ 𝑀 (13) 

 Now, each eigenvalue 𝜆 of matrix 𝐴 satisfy at least one of the following inequalities.  

 𝜆 (𝐴) ≥ 1 + 2𝑟 − 𝑟 = 1 + 𝑟 > 1;  𝑠𝑖𝑛𝑐𝑒 𝑟 > 0 

Therefore,  

 𝜆 (𝐴) ≥ 1 

(ii) We have,  

 ∥ 𝐴 ∥ = max𝜁 ∥ 𝜆 (𝐴)| ≥ 1 

Hence,  
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 ∥ 𝐴 ∥ ≥ 1 

Therefore,  

 ∥ 𝐴 ∥ ≤
| ( )|

≤ 1 

(iii)  ∥ 𝐵 ∥ ≤ 𝑟 + 1 − 2𝑟 − 𝜇 + 𝑟 < 1 

 

 ∥ 𝐶 ∥ ≤ |𝑟 + 1 − 𝑏 − 2𝑟 + 𝑟 − 𝜇| ≤ (1 − 𝜇) − 𝑏 ≤ 1 − 𝑏 < 1 

 

Theorem 3.2 The solution of the finite difference scheme (7)-(10) for TFRDE (1)-(3) is 
unconditionally stable.  

Proof: Now to prove that the above finite difference scheme in unconditionally stable, that is 
to show that,  

 ∥ 𝑉 ∥ ≤∥ 𝑉∘ ∥ ; 𝑘 ≥ 1 

From equation (2.8), we have  

 𝐴𝑉 = 𝐵𝑉∘, 𝑓𝑜𝑟 𝑘 = 0 

 𝑉 = 𝐴 𝐵𝑉∘ 

 ∥ 𝑉 ∥ ≤∥ 𝐴 𝐵𝑉∘ ∥  

 ≤∥ 𝐴 ∥ ∥ 𝐵 ∥ ∥ 𝑉∘ ∥  

 ≤∥ 𝑉∘ ∥  

Therefore,  

 ∥ 𝑉 ∥ ≤∥ 𝑉∘ ∥  

Therefore, the result is true for 𝑘 = 1. Assume that the result is true for 𝑘, that is,  

 ∥ 𝑉 ∥ ≤∥ 𝑉∘ ∥  

Now to prove, the result is true for k+1, therefore, from equation (2.14), we have,  

 𝐴𝑉 = 𝐶𝑉 ∑ (𝑏 − 𝑏 )𝑉 + 𝑏 𝑉∘ 

 𝑉 = 𝐴 𝐶𝑉 + 𝐴 ∑ (𝑏 − 𝑏 )𝑉 + 𝑏 𝐴 𝑉∘ 

 ∥ 𝑉 ∥ ≤∥ 𝐴 ∥ ∥ 𝑉 ∥ ∥ 𝑉 ∥ +∥ 𝐴 ∥ ∑ (𝑏 − 𝑏 ) ∥ 𝑉 ∥  

 +𝑏 ∥ 𝐴 ∥ ∥ 𝑉∘ ∥  
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 ≤ |1 − 𝑏 | ∥ 𝑉∘ ∥ + ∑ (𝑏 − 𝑏 ) ∥ 𝑉∘ ∥ + 𝑏 ∥ 𝑉∘ ∥  

 ≤ 1 − 𝑏 + ∑ (𝑏 − 𝑏 ) + 𝑏 ∥ 𝑉∘ ∥  

 ≤ (1 − 𝑏 + (𝑏 − 𝑏 ) + (𝑏 − 𝑏 ) + ⋯ 

 +(𝑏 − 𝑏 ) + 𝑏 ) ∥ 𝑉∘ ∥  

Therefore,  

 ∥ 𝑉 ∥ ≤∥ 𝑉∘ ∥  

Hence by induction, the result is true for all 𝑘.  

 ∥ 𝑉 ∥ ≤∥ 𝑉∘ ∥ , ∀𝑘 

This shows that, the scheme is unconditionally stable.  

4  Convergence 
We introduce the another vector for,  

 𝑉 = [𝑉(𝜁 , 𝜏 ), ⋯ , 𝑉(𝜁 , 𝜏 ), ⋯ , 𝑉(𝜁 , 𝜏 )]  

which represents the exact solution at the time level 𝜏  whose size is 𝑀. Therefore from the 
above discretization scheme,  

 𝐴𝑉 = 𝐵𝑉
∘

+ 𝑡  (14) 

  

 𝐴𝑉 = 𝐵𝑉 + ∑ (𝑏 − 𝑏 )𝑉 + 𝑏 𝑉
∘

+ 𝜏 ;  𝑓𝑜𝑟 𝑘 ≥ 1 (15) 

 where,  

 𝐴 = [𝑎 ] =

⎩
⎪
⎨

⎪
⎧

1 + 2𝑟 if𝑖 = 𝑗
−𝑟 if𝑖 = 𝑗 + 1
−𝑟 if𝑖 = 𝑗 − 1
−2𝑟 if𝑖 = 𝑀, 𝑗 = 𝑀 − 1
0 otherwise

 

  

 𝐴 = [𝑎 ] =

⎩
⎪
⎨

⎪
⎧

1 − 2𝑟 − 𝜇 if𝑖 = 𝑗
𝑟 if𝑖 = 𝑗 + 1
𝑟 if𝑖 = 𝑗 − 1
2𝑟 if𝑖 = 𝑀, 𝑗 = 𝑀 − 1
0 otherwise
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 𝐴 = [𝑎 ] =

⎩
⎪
⎨

⎪
⎧

1 − 2𝑟 − 𝜇 − 𝑏 if𝑖 = 𝑗
𝑟 if𝑖 = 𝑗 + 1
𝑟 if𝑖 = 𝑗 − 1
2𝑟 if𝑖 = 𝑀, 𝑗 = 𝑀 − 1
0 otherwise

 

 and 𝜏  is the vector of the truncation error at the time level 𝑡 .  

 

Theorem 4.1 The finite difference scheme (7) - (10) for TFRDE (1) - (3) is unconditionally 

convergent, that is to prove ∥ 𝐸 ∥ ≤∥ 𝐸∘ ∥ , 𝑎𝑠 (ℎ, 𝜏) → (0,0).  

  

Proof. We subtract equation (7) from (14) and (10) from (15) respectively, we get  

𝐴(𝑉 − 𝑉 ) = 𝐵(𝑉 − 𝑉∘) + 𝜏   (16) 

  

𝐴(𝑉 − 𝑉 ) = 𝐵(𝑉 − 𝑉 ) + ∑ (𝑏 − 𝑏 )(𝑉 − 𝑉 + 𝑏 (𝑉
∘

− 𝑉∘) + 𝜏

 (17) 

We set,  

 𝐸 = (𝑉 − 𝑉 ) 

where,  

 𝐸 = [𝑒 , 𝑒 , 𝑒 , ⋯ , 𝑒 ] ; 𝐶 = [𝑉 , 𝑉 , 𝑉 , ⋯ , 𝑉 ]  

From equation (4.3), we have  

 𝐴𝐸 = 𝐵𝐸∘ + 𝜏  

 𝐸 = 𝐴 𝐵𝐸∘ + 𝐴 𝜏  

 ∥ 𝐸 ∥ ≤∥ 𝐴 ∥ ∥ 𝐵 ∥ ∥ 𝐸∘ ∥ +∥ 𝐴 ∥ ∥ 𝜏 ∥ ∥ ≤∥ 𝐸∘ ∥ + 

 +𝑂(𝜏 + ℎ ) 

Assume that the result is true for 𝑘,  

 ∥ 𝐸 ∥ ≤∥ 𝐸∘ ∥ + 0(𝜏 + ℎ ) 

Now to prove that the result is true for 𝑘 + 1. From equation (4.4), we have  

 𝐴𝐸 = 𝐶𝐸 + ∑ (𝑏 − 𝑏 )𝐸 + 𝑏 𝐸∘ + 𝜏  
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 𝐸 = 𝐴 𝐶𝐸 + 𝐴 ∑ (𝑏 − 𝑏 )𝐸 + 𝑏 𝐴 𝐸∘ 

 +𝐴 𝜏  

 ∥ 𝐸 ∥ =∥ 𝐴 ∥ ∥ 𝐶 ∥ ∥ 𝐸 ∥ + 

 ∥ 𝐴 ∥ ∑ (𝑏 − 𝑏 ) ∥ 𝐸 ∥ + 𝑏 ∥ 𝐴 ∥ ∥ 𝐸∘ ∥  

 +∥ 𝐴 ∥ 𝜏  

 ≤ |1 − 𝑏 | ∥ 𝐸∘ ∥ + ∑ (𝑏 − 𝑏 ) ∥ 𝐸∘ ∥ + 𝑏 ∥ 𝐸∘ ∥  

 ≤ 1 − 𝑏 + ∑ (𝑏 − 𝑏 )𝑏 ∥ 𝐸∘ ∥ + 0(𝜏 + ℎ ) 

 ≤∥ 𝐸∘ ∥ 0(𝜏 + ℎ ) 

Thus the result is true for 𝑘 + 1, hence by induction it is true for all 𝑘.  

 ∥ 𝐸 ∥ ≤∥ 𝐸∘ ∥ , 𝑎𝑠 (ℎ, 𝜏) → (0,0) 

This proves that, the scheme is unconditionally convergent.  

 5  Numerical Solution 

We consider the following time-fractional radon diffusion equation  

 
( , )

= 𝐷
( , )

− 𝜆𝑉(𝜁, 𝜏) 

Initial condition: 𝑉(𝜁, 0) = 0,0 < 𝑧 < 𝐿 

Boundary conditions: 𝑉(0, 𝜏) = 𝑑𝑐𝑉 , and  
( , )

= 0, 𝜏 ≥ 0. 

Exact solution for 𝛾 = 1 is as follows,  

 𝑉(𝜁, 𝜏) = 𝑑𝑐𝑉
( )

 

 − ∑
( )

( )

( )
sin

( )
 (18) 

In Table 1, the approximate solution of time-fractional radon diffusion equation derived from 
the fractional finite difference scheme is compared with the exact solution for the parameters 
𝜇 = 2.1 × 10 , 𝑇 = 1, 𝐿 = 1, 𝐷 = 1 × 10 , 𝑉(0, 𝜏) = 1, which demonstrating the 
method’s effectiveness. 
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  Absolute error 

 

𝑥 →  0.2 0.4 0.6 0.8 1.0 

𝑡 ↓        

.0  1.03 ×   10  5.41 ×   10  3.93 ×   10  3.34 ×   10  3.18 ×   10  

.2  8.45 ×   10  4.44 ×   10  3.22 ×   10  2.74 ×   10  2.61 ×   10  

.4  6.94 ×   10  3.64 ×   10  2.65 ×   10  2.25 ×   10  2.14 ×   10  

.6  5.69 ×   10  2.99 ×   10  2.17 ×   10  1.85 ×   10  1.76 ×   10  

.8  4.67 ×   10  2.45 ×   10  1.78 ×   10  1.51 ×   10  1.44 ×   10  

.0  3.83 ×   10  2.01 ×   10  1.46 ×   10  1.24 ×   10  1.18 ×   10  

Table  1: Absolute error 

 Now, we take another set of particular values for the parameters as follows: Radon diffusivity 
coefficient in water 𝐷 = 1 × 10 𝐵𝑞/𝑚 , Spatial length 𝐿 = 1.7278 𝑐𝑚, Radon decay 
constant 𝜇 = 2.1 × 10 , Adsorption coefficient 𝑐 = 4𝑚 /𝑘𝑔, Material density 𝑑 =

0.5𝑔/𝑐𝑚  and Constant Radon concentration in air 𝑉 = 200𝐵𝑞/𝑚 . With this parameters, 
we simulate the radon concentration in water after 𝜏 = 5.6  𝑚𝑖𝑛 in the Figure 1 and we can 
observe that radon loss in its concentration with length.  

   

Figure  1: Radon concentration for 𝜏 = 12  ℎ𝑟𝑠, 𝛾 = 1, ℎ = 0.001, 𝜏 = 432 
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Also, in Figure 2, we present radon concentration for 𝛾 = 1 and 𝛾 = 0.99 and observe that 
radon concentration increases more rapidly as 𝛾 increases.  

   

Figure  2: Radon concentration for 𝑡 = 12  ℎ𝑟𝑠, ℎ = 0.001, 𝜏 = 432 

  6  Conclusion   

i)We have successfully developed Crank-Nikolson finite difference scheme for solving 
time-fractional order Radon diffusion equations.  

ii)A comprehensive analysis of the stability and convergence of the proposed scheme has 
been conducted.  

iii)Utilizing this method, numerical solutions for practical problems involving a water 
medium have been obtained, and these solutions have been presented through graphical 
simulations.  

iv)The effect of the time-fractional order, denoted by 𝛾, on radon concentration has been 
investigated, revealing a rapid decrease in concentration as 𝛾 increases.  

  

References 

[1]  Tuan Anh Dao, Ken Mattsson, and Murtazo Nazarov. Energy stable and accurate coupling 
of finite element methods and finite difference methods. Journal of Computational Physics, 
449, 2022. 

[2]  Krishna Ghode, Kalyanrao Takale, and Shrikisan Gaikwad. New technique for solving 
time fractional wave equation: Python. Journal of Mathematical and Computational Science, 
2021. 

[3]  Jordan Hristov. Non-local kinetics: Revisiting and updates emphasizing fractional calculus 
applications, 2023. 

[4]  Guo Huang, Hong Ying Qin, Qingli Chen, Zhanzhan Shi, Shan Jiang, and Chenying 
Huang.  Research on application of fractional calculus operator in image underlying 
processing. Fractal and Fractional, 8, 2024. 



SOLVING TIME-FRACTIONAL RADON DIFFUSION EQUATION USING CRANK-NICOLSON FINITE DIFFERENCE 
SCHEME 

Copyright © 2024 SCIENTIFIC CULTURE  98 
 

[5]  Y Ishimori, K Lange, P Martin, Y S Mayya, and M Phaneuf.  Measurement and calculation 
of radon releases from norm residues. Measurement and Calculation of Radon Releases from 
NORM Residues, 2013. 

[6]  Manisha Joshi, Savita Bhosale, and Vishwesh A. Vyawahare. A survey of fractional 
calculus applications in artificial neural networks. Artificial Intelligence Review, 56, 2023. 

[7]  Ewelina Kubacka and Piotr Ostrowski. Influence of composite structure on temperature 
distributionâ€”an analysis using the finite difference method. Materials, 16, 2023. 

[8]  Roushan Kumar, Rakhi Tiwari, and Rashmi Prasad. Numerical solution of partial 
differential equations: Finite difference method, volume 1.  2023. 

[9] Isaac Y. Miranda-Valdez, Jesús G. Puente-Córdova, Flor Y. Rentería-Baltiérrez, Lukas 
Fliri, Michael Hummel, Antti Puisto, Juha Koivisto, Mikko J. Alava. Viscoelastic phenomena 
in methylcellulose aqueous systems: Application of fractional calculus. Food Hydrocolloids, 
147, 2024.  

[10]  Koichi Miyamoto and Kenji Kubo. Pricing multi-asset derivatives by finite-difference 
method on a quantum computer. IEEE Transactions on Quantum Engineering, 3, 2022. 

[11]  Mohammed Abed Naser and Khalid Adel Abdulrazzaq. Molding and simulation 
sedimentation process using finite difference method. Journal of the Mechanical Behavior of 
Materials, 31, 2022. 

[12]  Ndivhuwo Ndou, Phumlani Dlamini, and Byron Alexander Jacobs. Enhanced 
unconditionally positive finite difference method for advectionâ€“diffusionâ€“reaction 
equations. Mathematics, 10, 2022. 

[13]  T. D. Rao and S. Chakraverty. Modeling radon diffusion equation in soil pore matrix by 
using uncertainty based orthogonal polynomials in galerkin’s method. Coupled Systems 
Mechanics, 6, 2017. 

[14]  Sunil Dattatray Sadegaonkar and Rajkumar Namdevrao Ingle. Fractional order explicit 
finite difference scheme for time fractional radon diffusion equation in charcoal medium.   
Journal of Mathematical and Computational Science, 11, 2021. 

[15]  Chuang Chao Ye, Peng Jun Yi Zhang, Zhen Hua Wan, Rui Yan, and De Jun Sun.  
Accelerating cfd simulation with high order finite difference method on curvilinear coordinates 
for modern gpu clusters. Advances in Aerodynamics, 4, 2022. 

[16]  Meirong Zhang and Jianyong Dai. Fuzzy optimal control of multilayer coverage based 
on radon exhalation dynamics in uranium tailings. Scientific Reports, 13, 2023. 

[17]  Houssine Zine and Delfim F.M. Torres. A stochastic fractional calculus with applications 
to variational principles. Fractal and Fractional, 4, 2020. 



SOLVING TIME-FRACTIONAL RADON DIFFUSION EQUATION USING CRANK-NICOLSON FINITE DIFFERENCE 
SCHEME 

Copyright © 2024 SCIENTIFIC CULTURE  99 
 

[18]  Uttam Kharde, Kalyanrao Takale, and Shrikisan Gaikwad. Crank-Nicolson Method For 
Time Fractional Drug Concentration Equation in Central Nervous System. Advances and 
Applications in Mathematical Sciences,22(2) 2022.  

 

 

 


